| Add and Subtract Complex Numbers | 
            
            
              
              When performing the arithmetic operations of adding or subtracting on complex numbers, remember to combine "similar" terms. Also check to see if the answer must  be expressed in simplest a+ bi form.
            
              
                | Addition Rule:    (a + bi) + (c + di) = (a + c) + (b + d)i | 
            
            Add the "real" portions, and add the "imaginary" portions of the complex numbers.
              Notice the distributive property at work when adding the imaginary portions:
              bi + di  becomes  (b + d)i .
            
            
            
              
                | Additive Identity:    (a + bi) + (0 + 0i) = a + bi | 
            
            
            
              
                | Additive Inverse:    (a + bi) + (-a - bi) = (0 +0i) | 
          
             ADD: (6 + 4i) + (8 - 2i)
        ADD: (6 + 4i) + (8 - 2i)
            Express answer in a + bi form.
            Adding parts: (6 + 4i) + ( 8 - 2i) = 6 + 4i + 8 - 2i = 6 + 8 + 4i - 2i = 14 + 2i
             Addition Rule grouping: (6 + 4i) + ( 8 - 2i) = (6 + 8) + (4 - 2)i = 14 + 2i 
             
             ADD: 3 + (-2 - 4i) + (5 + i) + (0 - 2i)
    ADD: 3 + (-2 - 4i) + (5 + i) + (0 - 2i)
                Express answer in a + bi form.
            3 + (-2 - 4i) + (5 + i) + (0 - 2i) = 3 - 2 - 4i + 5 + i - 2i = 6 - 5i
              It is not  necessary to always show the "grouping" of terms unless you are asked to do so.
              Just be careful of the signs when subtraction is involved.
              
              
            
             ADD:
   ADD:  
 
              Express answer in a + bi form. 
            
              Notice that the radicals were simplified before the addition began. 
            
               ADD:
   ADD: 
              Express answer in a + bi form. 
            
            
             
            
              
                | Subtraction Rule:    (a + bi) - (c + di) = (a - c) + (b - d)i | 
            
            Subtract the "real" portions, and subtract the "imaginary" portions of the complex numbers.
Notice the distributive property at work when subtracting the imaginary portions:
bi - di  becomes  (b - d)i . 
             SUBTRACT: (10 + 3i) - (7 - 4i)
      SUBTRACT: (10 + 3i) - (7 - 4i)
              Express answer in a + bi form. 
            (10 + 3i) - (7 - 4i) = 10 + 3i - 7 - (-4i) = 10 - 7 + 3i + 4i = 3 + 7i 
              
              Subtract Rule grouping: (10 + 3i) - (7 - 4i) = (10 - 7) + (3 - (-4))i = 3 + 7i 
              
            
             SUBTRACT:
   SUBTRACT:  
 
              Express answer in a + bi form. 
            
            
               SUBTRACT:
   SUBTRACT: 
              Express answer in a + bi form. 
            